Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nat Rev Phys ; 2(6): 279-281, 2020.
Article in English | MEDLINE | ID: covidwho-1684119

ABSTRACT

As the COVID-19 pandemic continues, mathematical epidemiologists share their views on what models reveal about how the disease has spread, the current state of play and what work still needs to be done.

2.
Nat Med ; 26(12): 1829-1834, 2020 12.
Article in English | MEDLINE | ID: covidwho-834900

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is straining public health systems worldwide, and major non-pharmaceutical interventions have been implemented to slow its spread1-4. During the initial phase of the outbreak, dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was primarily determined by human mobility from Wuhan, China5,6. Yet empirical evidence on the effect of key geographic factors on local epidemic transmission is lacking7. In this study, we analyzed highly resolved spatial variables in cities, together with case count data, to investigate the role of climate, urbanization and variation in interventions. We show that the degree to which cases of COVID-19 are compressed into a short period of time (peakedness of the epidemic) is strongly shaped by population aggregation and heterogeneity, such that epidemics in crowded cities are more spread over time, and crowded cities have larger total attack rates than less populated cities. Observed differences in the peakedness of epidemics are consistent with a meta-population model of COVID-19 that explicitly accounts for spatial hierarchies. We paired our estimates with globally comprehensive data on human mobility and predict that crowded cities worldwide could experience more prolonged epidemics.


Subject(s)
COVID-19/epidemiology , COVID-19/etiology , Crowding , Pandemics , China/epidemiology , Cities/epidemiology , Contact Tracing , Demography/standards , Demography/statistics & numerical data , Disease Outbreaks , Forecasting/methods , Geography , Human Activities/statistics & numerical data , Humans , Physical Distancing , Population Density , Public Policy/trends , SARS-CoV-2/physiology , Travel/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL